Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Mulzer, Wolfgang; Phillips, Jeff M (Ed.)It is unlikely that the discrete Fréchet distance between two curves of length n can be computed in strictly subquadratic time. We thus consider the setting where one of the curves, P, is known in advance. In particular, we wish to construct data structures (distance oracles) of near-linear size that support efficient distance queries with respect to P in sublinear time. Since there is evidence that this is impossible for query curves of length Θ(n^α), for any α > 0, we focus on query curves of (small) constant length, for which we are able to devise distance oracles with the desired bounds. We extend our tools to handle subcurves of the given curve, and even arbitrary vertex-to-vertex subcurves of a given geometric tree. That is, we construct an oracle that can quickly compute the distance between a short polygonal path (the query) and a path in the preprocessed tree between two query-specified vertices. Moreover, we define a new family of geometric graphs, t-local graphs (which strictly contains the family of geometric spanners with constant stretch), for which a similar oracle exists: we can preprocess a graph G in the family, so that, given a query segment and a pair u,v of vertices in G, one can quickly compute the smallest discrete Fréchet distance between the segment and any (u,v)-path in G. The answer is exact, if t = 1, and approximate if t > 1.more » « less
- 
            Mulzer, Wolfgang; Phillips, Jeff M (Ed.)We propose precise notions of what it means to guard a domain "robustly", under a variety of models. While approximation algorithms for minimizing the number of (precise) point guards in a polygon is a notoriously challenging area of investigation, we show that imposing various degrees of robustness on the notion of visibility coverage leads to a more tractable (and realistic) problem for which we can provide approximation algorithms with constant factor guarantees.more » « less
- 
            Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)In this paper we study a few proximity problems related to a set of pairwise-disjoint segments in {ℝ}². Let S be a set of n pairwise-disjoint segments in {ℝ}², and let r > 0 be a parameter. We define the segment proximity graph of S to be G_r(S) := (S,E), where E = {(e₁,e₂) ∣ dist(e₁,e₂) ≤ r} and dist (e₁,e₂) = min_{(p,q) ∈ e₁× e₂} ‖p-q‖ is the Euclidean distance between e₁ and e₂. We define the weight of an edge (e₁,e₂) ∈ E to be dist(e₁,e₂). We first present a simple grid-based O(nlog² n)-time algorithm for computing a BFS tree of G_r(S). We apply it to obtain an O^*(n^{6/5}) + O(nlog²nlogΔ)-time algorithm for the so-called reverse shortest path problem, in which we want to find the smallest value r^* for which G_{r^*}(S) contains a path of some specified length between two designated start and target segments (where the O^*(⋅) notation hides polylogarithmic factors). Here Δ = max_{e ≠ e' ∈ S} dist(e,e')/min_{e ≠ e' ∈ S} dist(e,e') is the spread of S. Next, we present a dynamic data structure that can maintain a set S of pairwise-disjoint segments in the plane under insertions/deletions, so that, for a query segment e from an unknown set Q of pairwise-disjoint segments, such that e does not intersect any segment in (the current version of) S, the segment of S closest to e can be computed in O(log⁵ n) amortized time. The amortized update time is also O(log⁵ n). We note that if the segments in S∪Q are allowed to intersect then the known lower bounds on halfplane range searching suggest that a sequence of n updates and queries may take at least close to Ω(n^{4/3}) time. One thus has to strongly rely on the non-intersecting property of S and Q to perform updates and queries in O(polylog(n)) (amortized) time each. Using these results on nearest-neighbor (NN) searching for disjoint segments, we show that a DFS tree (or forest) of G_r(S) can be computed in O^*(n) time. We also obtain an O^*(n)-time algorithm for constructing a minimum spanning tree of G_r(S). Finally, we present an O^*(n^{4/3})-time algorithm for computing a single-source shortest-path tree in G_r(S). This is the only result that does not exploit the disjointness of the input segments.more » « less
- 
            Mavronicolas, Marios (Ed.)Let {\$$}{\$$}E={\backslash}{\{}e{\_}1,{\backslash}ldots ,e{\_}n{\backslash}{\}}{\$$}{\$$}be a set of C-oriented disjoint segments in the plane, where C is a given finite set of orientations that spans the plane, and let s and t be two points. We seek a minimum-link C-oriented tour of E, that is, a polygonal path {\$$}{\$$}{\backslash}pi {\$$}{\$$}from s to t that visits the segments of E in order, such that, the orientations of its edges are in C and their number is minimum. We present an algorithm for computing such a tour in {\$$}{\$$}O(|C|^2 {\backslash}cdot n^2){\$$}{\$$}time. This problem already captures most of the difficulties occurring in the study of the more general problem, in which E is a set of not-necessarily-disjoint C-oriented polygons.more » « less
- 
            Czumaj, Artur; Xin, Qin (Ed.)We describe a dynamic data structure for approximate nearest neighbor (ANN) queries with respect to multiplicatively weighted distances with additive offsets. Queries take polylogarithmic time, while the cost of updates is amortized polylogarithmic. The data structure requires near-linear space and construction time. The approach works not only for the Euclidean norm, but for other norms in ℝ^d, for any fixed d. We employ our ANN data structure to construct a faster dynamic structure for approximate SINR queries, ensuring polylogarithmic query and polylogarithmic amortized update for the case of non-uniform power transmitters, thus closing a gap in previous state of the art. To obtain the latter result, we needed a data structure for dynamic approximate halfplane range counting in the plane. Since we could not find such a data structure in the literature, we also show how to dynamize one of the known static data structures.more » « less
- 
            Let T be a set of n planar semi-algebraic regions in R^3 of constant complexity (e.g., triangles, disks), which we call _plates_. We wish to preprocess T into a data structure so that for a query object gamma, which is also a plate, we can quickly answer various intersection queries, such as detecting whether gamma intersects any plate of T, reporting all the plates intersected by gamma, or counting them. We also consider two simpler cases of this general setting: (i) the input objects are plates and the query objects are constant-degree algebraic arcs in R^3 (arcs, for short), or (ii) the input objects are arcs and the query objects are plates in R^3. Besides being interesting in their own right, the data structures for these two special cases form the building blocks for handling the general case. By combining the polynomial-partitioning technique with additional tools from real algebraic geometry, we obtain a variety of results with different storage and query-time bounds, depending on the complexity of the input and query objects. For example, if T is a set of plates and the query objects are arcs, we obtain a data structure that uses O^*(n^(4/3)) storage (where the O^*(...) notation hides subpolynomial factors) and answers an intersection query in O^*(n^(2/3)) time. Alternatively, by increasing the storage to O^*(n^(3/2)), the query time can be decreased to O^*(n^(rho)), where rho = (2t-3)/(3(t-1)) < 2/3 and t≤3 is the number of parameters needed to represent the query arcs.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available